欢迎您
登录 | 注册

郑州市第101中学校长工作室

工作室资料
郑州市第101中学校长工作室名称:郑州市第101中学校长工作室
主持人及助理
工作室概览
  • 成员数 10
  • 话题数 210
  • 回帖数 36

工作室介绍
郑州市第101中学校长工作室由七位成员组成,主持人李国喜校长是河南省首批中小学幼儿园教师教育专家、河南省骨干教师、郑州市专业技术拔尖人才、郑州市优秀教育工作者、郑州市学术技术带头人,常年在教学一线从事教学和管理工作,善于对先进教育理念的学习,注重教学的过程管理,重视学生的行为习惯教育,教学成绩突出,管理工作经验丰富,曾先后担任郑州九中学副校长、郑州五十二中校长,现任郑州市第101中学校长。    <br/>
五位学员分别是郑州9中副校长陈晓、郑州44中党总支副书记丁红、郑州102中学纪委书记高淑敏、郑州市扶轮外国语学校副校长魏小山、郑州106中学副校长程龙。<br/>
工作室助理王占世是郑州市第101中学教师发展中心主任。

最新回复

高中 - 郑州市第101中学校长工作室

  • 分享

    专题:STEM教育 | 证据导向的STEM教学模式研究

    1 高淑敏 2019-12-17 20:36

    一、证据导向的STEM教学模式构建

           在基于证据的学习理论指导下,结合STEM教育的跨学科整合特征构建证据导向的STEM教学模式(见图1),注重STEM课堂上问题或项目中所包含的学科知识内在联系,关注学生在解决问题和完成任务过程中的认知活动,强调对学习过程中一切证据的收集和利用,促进教学活动中发展性、诊断性评估方式的开展,提高学生对知识的理解水平,发展其核心素养和关键能力。


           从解决一个问题或进入一个项目开始,到找到该问题的解决方案或者完成一件最终的“人工制品”,在这个过程中反映学生学习过程和成果的所有数据、材料等都可以作为学习的证据。学习证据既是学生解决问题的线索,也是评价学生学习过程的依据。

           对于教师,根据STEM教育的跨学科整合性和基于证据的学习理论,在设计“问题或项目”时应注重知识的内在逻辑以及证据的意识,即注重“问题或项目”背后所包含的多门学科知识之间的联系,新知识与学习者已有的先验知识之间的联系,以及与真实问题或项目之间的联系,帮助学生对知识进行生活化、情境化和社会化,使得其学到的知识不是孤立、僵化的,而是灵活、有关联的。同时,根据课程的评价方案规定每个学习活动中收集的证据的形式、类型和内容,并思考如何利用这些证据帮助学习者理解知识并发展能力,如何通过数据分析和数据挖掘找寻教育中存在的问题和规律。此外,教师基于证据开展形成性评价和表现性评价,利用证据对学生的过程性表现进行实时监控,发现学生不同维度的能力水平随着STEM教学活动推进而展现出的动态发展水平,及时了解学生的学习状况并调整教学内容与进度。

           对于学生,在学习STEM课程期间需要有深度认知投入的学习,包括理解不同知识之间内在的逻辑关系,理解问题和逻辑背后所包含的学科知识和科学原理,综合运用多学科的知识进行推理、论证、假设和验证等。通过这些高级思维活动主动发现知识,构建起不同知识之间的联系以及知识与情境、知识与生活之间的联系。此外,学生从进入问题或项目到最终形成问题解决方案或“人工制品”,整个过程是由不同的环节构成,每个环节有阶段性子问题或子任务。而只有寻着这些环节的脉络,一步一步地解决每个子问题或完成每个子任务,找到一连串的证据,并根据这些证据得到整个问题的解决方案或完成“人工制品”,真正地体验获取知识的过程,而不是机械模仿和重复教师的操作,才能有效促进学生关键能力和核心素养的发展。

    二、证据导向的STEM教学模式实施建议

           (1)设计问题或项目时要重点关注跨学科整合性,注重知识的内在逻辑,以促进学生的深度学习

           中国学生常常在计算、阅读、解题方面能力较强,但是批判性思维、创新思维水平较低。要想提高这些高阶思维水平就需要尽可能多地参与高级认知活动,进行深度学习,锻炼高阶思维能力。根据布卢姆的教育目标分类理论,学生的认知过程由低到高可分为记忆/回忆、理解、应用、分析、评价和创造。深度学习对应的学习目标是分析、评价与创新,体现了高阶思维能力,需要情感、行为的高度投入,通过复杂问题解决而使学习者获得认知深度与广度的提升以及认知结构的改变。而浅层学习指向的是认知中的识记、理解与应用,情感与行为投入低,知识间没有产生联系。

           而证据导向的STEM教学模式强调要关注学生的学习过程,评估学生的学习成效以及创新学习是否有效发生。其中创新学习的有效发生包括了学生是否发生高级认知活动,是否运用高阶思维能力等。这些都需要在学生学习过程中收集一系列的证据去表征,并基于这些证据客观反映和评价学生的学习过程与学习成效。

           因此,教师在设计STEM课程时,不仅需要打破不同学科之间的界限,弥补分科课程教学所带来的不足,更重要的是需注重知识的内在逻辑和具有证据意识。首先要分析各门学科最基本的学科知识结构以及知识的内在逻辑,找到不同知识之间、知识与问题之间、知识与生活之间的整合点,并将不同知识按跨学科的问题逻辑结构化,基于知识的内在逻辑设计问题或项目,细化每个问题或项目以形成序列化的子问题或子任务,通过让学生解决不同的子问题或完成一系列子任务来掌握其中蕴含的科学原理及学科知识。这些序列化的子问题或子任务的完成为学生提供了解决问题或完成任务的证据。基于证据学生逐渐理清问题的解决线索或形成任务的完成思路,帮助学生真正体验知识获得、掌握和迁移应用的过程,促进有意义学习的发生和高阶思维能力的发展。此外,设计STEM课程时还需要考虑学习证据的形式和作用,如在不同的子问题或子任务中产生的哪些过程性材料能够客观地反映学生的学习过程以及作为评估学生学习过程与成效的依据,并且教师在教学过程中如何利用这些证据动态、持续地了解学生的学习状况,以及时调整教学进度或改变教学策略。

           (2)发展学生的关键能力与核心素养,支持教师基于证据开展形成性评价和表现性评价

           未来的社会充满着复杂性和不确定性,面临的问题或任务也是未知、劣构的,没有清晰的目标,也没有给定条件,需要学习者主动介入到实际的问题情境中,通过一系列探究、发现、假设、验证或创造等活动,找寻问题解决方案。这完全颠覆了我们传统课堂上教给学生的解题模式和思维方式。STEM教育强调的正是培养学生面向未来的能力和素养。它以类似的真实问题或者项目为基础,让学生通过学习、探究、合作、设计、实践和验证等过程解决问题或完成“人工制品”,体验知识获取、内化和外化的过程,并在过程中锻炼问题解决能力、合作能力、表达能力、沟通能力和创新能力等。

           因此,在设计问题或项目时,教师需要思考如何将学术性的学科知识转化为可解决实际问题的生活性知识。通过知识的社会属性和生活属性将设计的“问题或项目”与人类社会、真实生活紧密联系起来,为学生提供生活化问题,创设社会化情境。依照生活常识以及解决真实问题的方式,基于知识的内在逻辑细化并组织子问题或子任务,让学生在解决一系列子问题或完成子任务后,除了理解知识内在逻辑外,还能够感受生活中的科学,真正体验知识迁移到实际生活中解决问题的过程,主动建立起知识与情境、知识与个体、知识与生活、知识与社会之间的关系,丰富他们的生活经验和实际问题解决的经历,帮助学生为未来的学习、生活和工作做好准备。

           但是,学生面向未来的种种能力素养的发展总是循序渐进的,具有动态性、发展性和连续性。要促进这些能力素养持续不断的提高,还需要有过程性的评估和反馈帮助学生了解自己的发展状况和需要调整的地方。但是目前大多数的STEM课程评价都是结果导向,常常基于学生最终的作品进行评估,依赖的评价依据和评价工具比较单一,即使有些课程中会增加生生互评、学生自评等方式,但是这些评价方式的主观性较强,无法客观地表征出学生的各项关键能力和核心素养的动态发展过程。所以需要收集学生学习过程中的各种证据去支持评估,促进学生关键能力和核心素养的发展。

           证据导向的STEM教学模式强调基于证据促进学生关键能力和核心素养的发展。当学生进入到STEM课程时,从接触到一个综合问题或项目到最终形成问题解决方案或完成一件“人工制品”,这期间会发现、生成或运用各种各样的证据。通过这些证据学生不仅能体验到获取知识的过程,更重要的是发展了其关键能力和核心素养。因为通过收集各种各样的证据,会实时客观地记录下学生的知识理解水平、行为表现、情感状态、心理过程、能力素养的动态变化过程。通过这种客观的过程性表征方式,师生不再需要凭借主观的感觉或判断去预估学生的学习状态,而能够多维度、多方位地观察学生的能力素养的变化,根据学生的问题和需求及时采取教学干预手段,以促进学生各项能力素养的发展。同时,基于这些证据还可以帮助教师开展形成性评价和表现性评价。

           (3)充分发挥大数据、人工智能等新一代信息技术的作用

           证据导向的STEM教育强调关注教与学的全过程,需要采集教育全过程所有数据以反映学习过程和验证有效学习的发生。利用大数据和人工智能领域已有的完备的数据分析技术处理采集到的学习证据,在良好的大数据生态体系的支持下,结合人工智能领域的深度学习、自然语言处理、知识图谱、知识推理、语义搜索、智能推荐等技术对采集到的大量过程性数据进行处理,例如语义关联,提取认知、情感等关键特征,构建学习者模型。基于模型精准掌握学生的学习需求和定位问题,实现智能化推送个性化的学习支持服务。基于对学习过程性证据的分析和判断,为学生的探究活动和问题解决提供自适应的认知工具和相关性强的学习资源,帮助学生找到解决问题的证据,真正理解问题背后蕴含的学科知识或科学原理,促进有效学习的发生。

           STEM跨学科整合的课程,由于强调跨学科整合性,难以系统、连贯地介绍某一门学科的知识,有时会重复介绍某些知识点,有时则会遗漏某些基础性知识点。这种知识结构不均衡式的课程设计容易造成学生基础教育领域知识的结构性缺失,对学生后续的生活、学习和创新能力发展产生负面影响。因此,需要借助知识地图技术帮助教师合理设计“问题或项目”,以全面覆盖基础教育领域所需掌握的知识点,帮助学生建立起立体化的知识网络,不但形成关于某门学科的基础性知识体系,而且建立起跨学科知识点之间的联系。传统的教学设计工具和技术难以实现这样复杂的工程,因此需要借助大数据、人工智能等新一代技术为师生提供支持。借助技术提取不同学科的关键知识点,定义不同知识点的性质、概念和语义关系等,形成不同知识点之间的逻辑关系网,为师生呈现一个立体化的知识网络。教师在借助该技术设计课程时可以与知识地图进行关联,以实时查看某个问题或项目覆盖了哪些知识点,覆盖的跨学科知识点之间是否存在关联;也可以查看到不同知识点被覆盖的频次和关联的强度,智能化地向教师推荐有关联的未覆盖的知识点。另外,当学生学完课程以后,可以实时查看个体知识体系的构建情况,及时发现薄弱或缺失的知识点并进行补充,以保证学生能够掌握基础教育领域完整的知识结构,同时发展跨学科创新能力。

你还不是该工作室正式成员,不能参与讨论。